Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 150: 40-62, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27519694

RESUMO

Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K+-channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. BIOLOGICAL SIGNIFICANCE: In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins.


Assuntos
Peptídeos/análise , Venenos de Escorpião/análise , Escorpiões/metabolismo , Transcriptoma , Sequência de Aminoácidos , Animais , Dissulfetos/metabolismo , Perfilação da Expressão Gênica , Peptídeos/química , Peptídeos/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/metabolismo
2.
J Proteomics ; 128: 231-50, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26254009

RESUMO

Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, KTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels.


Assuntos
Variação Genética/genética , Peptídeos/genética , Proteoma/genética , Venenos de Escorpião/genética , Transcriptoma/genética , Sequência de Bases , Evolução Molecular , Dados de Sequência Molecular , Proteômica/métodos
3.
Peptides ; 53: 30-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389272

RESUMO

Three new cysteine-free venom peptides, which are referred to as Heterin-1, Heterin-2 and Spiniferin, respectively, were identified from the scorpion Heterometrus spinifer. Heterin-1, Heterin-2 and Spiniferin contain 43, 24 and 13 amino acid residues, respectively. Genomic analysis showed that the genomic organizations of the three peptides are consistent with those of the known Na(+), K(+) or Cl(-)-channel specific toxins from scorpions; this suggests that the genes of the cysteine-free and cysteine-rich peptides from scorpions were derived from a common ancestor. Antimicrobial assay demonstrated that Heterin-1 possesses potent activities against both Gram-positive and Gram-negative bacteria. Among the tested bacterial species, Heterin-1 is the most active against Bacillus megaterium and Micrococcus luteus with MICs of 4.0 µM and 4.0 µM, respectively. Heterin-2 is able to potently inhibit the growth of Gram-positive bacteria with MICs from 5.6 µM to 30.0 µM; however, it has weaker activities against the tested Gram-negative bacteria. It is interesting to see that deletion of the C-terminal random coiled tail (KKD) in Heterin-2 markedly changed the antimicrobial specificity and activity of the peptide. Spiniferin has very weak antimicrobial activities against both Gram-positive and Gram-negative bacteria. We found that introducing three net charges into the polar face of Spiniferin significantly increased its antimicrobial activity against the majority of the tested bacteria; however, in some instances, net charge on the polar face is not important for the antimicrobial activity of the peptide. These studies have expanded our understanding of the diversity, evolution and structure/function relationships of the cysteine-free peptides from scorpions.


Assuntos
Peptídeos/química , Peçonhas/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Cultivadas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peptídeos/farmacologia , Alinhamento de Sequência
4.
Peptides ; 45: 28-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23624072

RESUMO

Three novel cysteine-free venom peptides, which were referred to as Pantinin-1, Pantinin-2 and Pantinin-3, respectively, have been identified from the scorpion Pandinus imperator by cDNA cloning strategy. The precursor of each peptide consists of a signal peptide, a mature peptide with no disulfide bridges, and an acidic propeptide with a typical processing signal. Each of the three peptides is an α-helical, cationic and amphipathic molecule with 13 or 14 amino acid residues. Their amino acid sequences are homologous to those of some 13-mer antimicrobial peptides isolated from scorpions. Antimicrobial assay showed that all the three peptides possess relatively strong activities against Gram-positive bacteria and a fungus, but have very weak antimicrobial activities against Gram-negative bacteria. Toxicity assay showed that the three peptides exhibit very low or mild hemolytic activities against human red blood cells. It is interesting to see that Pantinin-3 is able to potently inhibit the growth of vancomycin-resistant Enterococcus (VRE) S13, a pathogen that can cause a number of human infections; this suggests that Pantinin-3 has great potential to be applied in the treatment of VRE infections. Our findings gain new insights into the structure/function relationships of the small linear cationic antimicrobial peptides from scorpions, and provide new templates for designing of antimicrobial agents targeting antibiotic-resistant pathogenic bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Venenos de Escorpião/química , Escorpiões/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Clonagem Molecular , DNA Complementar/genética , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Venenos de Escorpião/genética , Venenos de Escorpião/farmacologia , Resistência a Vancomicina/efeitos dos fármacos
5.
Peptides ; 41: 45-58, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23099316

RESUMO

The full-length cDNA sequences of two novel cysteine-rich peptides (referred to as HsVx1 and MmKTx1) were obtained from scorpions. The two peptides represent a novel class of cysteine-rich peptides with a unique cysteine pattern. The genomic sequence of HsVx1 is composed of three exons interrupted by two introns that are localized in the mature peptide encoding region and inserted in phase 1 and phase 2, respectively. Such a genomic organization markedly differs from those of other peptides from scorpions described previously. Genome-wide search for the orthologs of HsVx1 identified 59 novel cysteine-rich peptides from arthropods. These peptides share a consistent cysteine pattern with HsVx1. Genomic comparison revealed extensive intron length differences and intronic number and position polymorphisms among the genes of these peptides. Further analysis identified 30 cases of intron sliding, 1 case of intron gain and 22 cases of intron loss occurred with the genes of the HsVx1 and HsVx1-like peptides. It is interesting to see that three HsVx1-like peptides XP_001658928, XP_001658929 and XP_001658930 were derived from a single gene (XP gene): the former two were generated from alternative splicing; the third one was encoded by a DNA region in the reverse complementary strand of the third intron of the XP gene. These findings strongly suggest that the genes of these cysteine-rich peptides were evolved by intron sliding, intron gain/loss, gene recombination and alternative splicing events in response to selective forces without changing their cysteine pattern. The evolution of these genes is dominated by intron sliding and intron loss.


Assuntos
Cisteína/química , Proteínas de Insetos/química , Escorpiões/genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Sequência Conservada , Evolução Molecular , Proteínas de Insetos/genética , Íntrons , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Filogenia , Polimorfismo Genético , Homologia de Sequência de Aminoácidos
6.
Peptides ; 38(2): 389-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23000095

RESUMO

The venom peptides from the scorpion Heterometrus spinifer have been poorly characterized so far. Here, we identified a novel class of antimicrobial peptides from the venom gland of H. spinifer, which were referred to as HsAp, HsAp2, HsAp3 and HsAp4, respectively. Each of the four peptides consists of 29 amino acid residues, and is cationic and weakly amphipathic. They display no significant homology to any other known peptides, and thus represent a new family of venom peptides from scorpions. Antimicrobial assay showed that HsAp is able to inhibit the growth of both Gram-negative and Gram-positive bacteria with the MIC values of 11.8-51.2 µM. HsAp is also able to inhibit the growth of the tested fungus. Genomic analysis indicated that the genes of all the four peptides are intronless. Our studies expand the families of antimicrobial peptides from scorpions.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Escorpiões/química , Sequência de Aminoácidos , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Biologia Computacional , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Venenos de Escorpião/química , Relação Estrutura-Atividade
7.
Peptides ; 37(1): 150-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22705625

RESUMO

The cDNA sequence encoding a novel BmKBT-like peptide (referred to as BmKBy) was cloned and sequenced from the scorpion Mesobuthus martensii Karsch. Functional analysis indicated that both BmKBT and BmKBy possess strong toxicity in mice, but very weak toxicity in cotton bollworm. Phylogenetic analysis showed that BmKBy and BmKBT represent evolutionary intermediates between the α- and ß-toxins from scorpions. The genomic sequences of BmKBT and BmKBy were also obtained. It is interesting to see that two genes, which contain an intron of 225 and 1529bp, respectively, exactly code for the BmKBT peptide. One gene, which contains an intron of 1312bp, codes for BmKBy. Given that genes with long introns favor constitutive expression, whereas those with short introns are rapidly regulated in response to stimulations, the BmKBT_a and BmKBT_b genes provide a mechanical basis for either constitutive expression or rapid generation of the toxic peptides in response to different signals.


Assuntos
Íntrons , Biossíntese de Proteínas , Venenos de Escorpião/genética , Escorpiões/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Larva/efeitos dos fármacos , Dose Letal Mediana , Camundongos , Dados de Sequência Molecular , Mariposas , Filogeografia , Venenos de Escorpião/biossíntese , Venenos de Escorpião/toxicidade , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...